Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Med (Lausanne) ; 8: 672629, 2021.
Article in English | MEDLINE | ID: covidwho-1389198

ABSTRACT

SARS-CoV-2 infection across the world has led to immense turbulence in the treatment modality, thus demanding a swift drug discovery process. Spike protein of SARS-CoV-2 binds to ACE2 receptor of human to initiate host invasion. Plethora of studies demonstrate the inhibition of Spike-ACE2 interactions to impair infection. The ancient Indian traditional medicine has been of great interest of Virologists worldwide to decipher potential antivirals. Hence, in this study, phytochemicals (1,952 compounds) from eight potential medicinal plants used in Indian traditional medicine were meticulously collated, based on their usage in respiratory disorders, along with immunomodulatory and anti-viral potential from contemporary literature. Further, these compounds were virtually screened against Receptor Binding Domain (RBD) of Spike protein. The potential compounds from each plant were prioritized based on the binding affinity, key hotspot interactions at ACE2 binding region and glycosylation sites. Finally, the potential hits in complex with spike protein were subjected to Molecular Dynamics simulation (450 ns), to infer the stability of complex formation. Among the compounds screened, Tellimagrandin-II (binding energy of -8.2 kcal/mol and binding free energy of -32.08 kcal/mol) from Syzygium aromaticum L. and O-Demethyl-demethoxy-curcumin (binding energy of -8.0 kcal/mol and binding free energy of -12.48 kcal/mol) from Curcuma longa L. were found to be highly potential due to their higher binding affinity and significant binding free energy (MM-PBSA), along with favorable ADMET properties and stable intermolecular interactions with hotspots (including the ASN343 glycosylation site). The proposed hits are highly promising, as these are resultant of stringent in silico checkpoints, traditionally used, and are documented through contemporary literature. Hence, could serve as promising leads for subsequent experimental validations.

2.
Chin Herb Med ; 13(3): 359-369, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1283985

ABSTRACT

OBJECTIVE: To identify the safe and effective natural inhibitors of spike glycoprotein and main protease 3CLpro using potential natural antiviral compounds which are studied under various animal models and viral cell lines. METHODS: First, compounds were retrieved from the PubChem database and predicted for their druggability using the MolSoft web server, and compounds having drug-like property were predicted for major adverse drug reactions like cardiotoxicity, hepatotoxicity, arrhythmia, myocardial infarction, and nephrotoxicity using ADVERpred. Docking of nontoxic antiviral compounds with spike glycoprotein and main protease 3CLpro was performed using AutoDock vina by PyRx 0.8 version. The stability of compound-protein interactions was checked by molecular dynamic (MD) simulation using Schrodinger Desmond software. RESULTS: Based on the druggable and nontoxic profile, nine compounds were selected. Among them, Withanone from Withania somnifera showed the highest binding affinity and best fit at active sites 1 of spike glycoprotein (glycosylation site) and main protease 3CLpro via interacting with active site amino acid residues before and after MD simulation at 50 ns. Withanone, which may reduce the glycosylation of SARS-CoV-2 via interacting with Asn343 and inhibit viral replication. CONCLUSION: The current study reports Withanone as a non-toxic antiviral against SARS-CoV-2 and serve as a potential lead hit for further experimental validation.

SELECTION OF CITATIONS
SEARCH DETAIL